# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Bis(4-ethylanilinium) 4,5-dichlorophthalate<sup>1</sup>

#### Orhan Büyükgüngör<sup>a</sup> and Mustafa Odabaşoğlu<sup>b</sup>\*

<sup>a</sup>Department of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and <sup>b</sup>Department of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey Correspondence e-mail: muodabas@omu.edu.tr

Received 9 October 2007; accepted 15 October 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.052; wR factor = 0.145; data-to-parameter ratio = 14.6.

The crystal structure of the title compound,  $2C_8H_{12}N^+$ .- $C_8H_3Cl_2O_4^{2-}$ , is stabilized by nine  $N-H\cdots O$  and four  $C-H\cdots O$  hydrogen bonds, and also by  $C-H\cdots \pi$  interactions. Intramolecular  $C-H\cdots O$  hydrogen bonds form C(6) chains along the *c* axis. This chain and the other hydrogen bonds generate edge-fused  $[R_1^2(6)R_1^2(4)R_4^3(10)R_1^2(4)R_3^2(9)]$  motifs in a three-dimensional network. The dihedral angles between the carboxylate anion and the cation aromatic ring planes are 75.90 (2) and 68.15 (2)°, and the dihedral angles between the carboxylate groups and the anion aromatic ring plane are 13.72 (3) and 84.64 (3)°.

#### **Related literature**

For related literature, see: Bozkurt *et al.* (2006); Braga *et al.* (2002); Büyükgüngör & Odabaşoğlu (2002); Büyükgüngör & Odabaşoğlu (2003); Büyükgüngör & Odabaşoğlu (2006*a,b*); Ersanlı *et al.* (2004); Etter (1990); Goswami *et al.* (1998); Goswami & Ghosh (1997); Joesten & Schaad (1974); Lam & Mak (2000); Mulliken & Person (1969); Odabaşoğlu & Büyükgüngör (2006*a,b,c,d*); Odabaşoğlu & Büyükgüngör (2007*a,b,c*); Odabaşoğlu *et al.* (2003*a,b*); Pimentel & McClellan (1960); Scheiner (1997*a*); Scheiner (1997*b*); Temel *et al.* (2007); Yeşilel *et al.* (2006).



**Experimental** 

Crystal data  $2C_8H_{12}N^+ \cdot C_8H_3Cl_2O_4^{2-}$  $M_r = 478.38$ 

Monoclinic,  $P2_1/c$ a = 16.9642 (16) Å

<sup>1</sup> Secondary interactions in organic halogen compounds. III. For Part II, see Odabaşoğlu & Büyükgüngör (2007c).

| b = 11.8744 (8) Å               |  |
|---------------------------------|--|
| c = 11.8783 (11)  Å             |  |
| $\beta = 103.133 \ (8)^{\circ}$ |  |
| V = 2330.2 (3) Å <sup>3</sup>   |  |
| Z = 4                           |  |

Data collection

Stoe IPDS2 diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002)  $T_{\rm min} = 0.828, T_{\rm max} = 0.932$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$   $wR(F^2) = 0.145$  S = 0.924585 reflections 314 parameters 3 restraints

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

| $D - H \cdots A$                     | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $N1 - H1B \cdots O1^{i}$             | 0.99 (4) | 2.67 (3)                | 3.442 (3)    | 134 (2)                              |
| $N1 - H1C \cdot \cdot \cdot O1^{ii}$ | 0.86 (4) | 1.90 (4)                | 2.747 (4)    | 172 (3)                              |
| $N1 - H1B \cdot \cdot \cdot O2^{i}$  | 0.99 (4) | 1.77 (4)                | 2.746 (3)    | 166 (3)                              |
| $N1 - H1A \cdots O3^{iii}$           | 0.93 (4) | 2.24 (4)                | 3.021 (3)    | 140 (3)                              |
| $N1 - H1A \cdots O4^{iii}$           | 0.93 (4) | 2.15 (4)                | 3.013 (4)    | 154 (3)                              |
| $N2-H2C\cdots O2^{i}$                | 0.84 (5) | 2.20 (5)                | 2.784 (4)    | 126 (4)                              |
| $N2-H2A\cdots O3^{iv}$               | 0.98 (5) | 1.94 (5)                | 2.913 (5)    | 174 (4)                              |
| $N2-H2C\cdots O4^{i}$                | 0.84 (5) | 2.58 (5)                | 3.350 (5)    | 152 (4)                              |
| $N2-H2B\cdots O4^{v}$                | 0.92 (4) | 1.83 (4)                | 2.739 (4)    | 172 (3)                              |
| $C6-H6\cdots O1^{vi}$                | 0.93     | 2.52                    | 3.388 (3)    | 154                                  |
| $C13-H13\cdots O3^{i}$               | 0.93     | 2.54                    | 3.402 (4)    | 154                                  |
| $C15-H15\cdots O1^{ii}$              | 0.93     | 2.55                    | 3.254 (4)    | 133                                  |
| $C23-H23\cdots O3^{iv}$              | 0.93     | 2.93                    | 3.641 (4)    | 134                                  |
| $C23-H23\cdots Cg1$                  | 0.93     | 2.69                    | 3.389 (4)    | 133                                  |

Symmetry codes: (i)  $x - 1, -y + \frac{3}{2}, z - \frac{1}{2}$ ; (ii)  $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$ ; (iii) x - 1, y, z; (iv) -x + 1, -y + 1, -z + 1; (v)  $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$ ; (vi)  $x, -y + \frac{3}{2}, z - \frac{1}{2}$ .

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2423).

#### References

Bozkurt, E., Kartal, İ., Büyükgüngör, O. & Odabaşoğlu, M. (2006). *Acta Cryst.* E**62**, 04258–04260.

Braga, D., Maini, L. & Grepioni, F. (2002). *Chem. Eur. J.* 8, 1804–1812.
Büyükgüngör, O. & Odabaşoğlu, M. (2002). *Acta Cryst.* C58, o691–o692.
Büyükgüngör, O. & Odabaşoğlu, M. (2003). *Acta Cryst.* C59, o105–o106.
Büyükgüngör, O. & Odabaşoğlu, M. (2006a). *Acta Cryst.* E62, o2749–o2750.
Büyükgüngör, O. & Odabaşoğlu, M. (2006b). *Acta Cryst.* E62, o3816–o3818.

Mo  $K\alpha$  radiation  $\mu = 0.31 \text{ mm}^{-1}$  T = 296 K $0.78 \times 0.45 \times 0.23 \text{ mm}$ 

16318 measured reflections

 $R_{\rm int} = 0.069$ 

refinement

 $\Delta \rho_{\rm max} = 0.62$  e Å<sup>-3</sup>

 $\Delta \rho_{\rm min} = -0.29$  e Å<sup>-3</sup>

4585 independent reflections

2666 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

independent and constrained

- Ersanlı, C. C., Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Erdönmez, A. (2004). *Acta Cryst.* E60, o397–o398.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Goswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K. & Fun, H.-K. (1998). Acta Cryst. C54, 1301–1302.
- Goswami, S. P. & Ghosh, K. (1997). Tetrahedron Lett. 38, 4503-4506.
- Joesten, M. D. & Schaad, L. J. (1974). Hydrogen Bonding. New York: M. Dekker.
- Lam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657-6665.
- Mulliken, R. S. & Person, W. B. (1969). Molecular Complexes. New York: Wiley Interscience.Odabaşoğlu, M., Büyükgüngör, O., Turgut, G., Karadağ, A., Bulak, E. &
- Coabaşogiu, M., Buyukgungor, O., Turgut, G., Karadag, A., Bulak, E. & Lönnecke, P. (2003b). J. Mol. Struct. 648, 133–138.
- Odabaşoğlu, M., Büyükgüngör, O. & Lönnecke, P. (2003a). Acta Cryst. C59, o51–o52.
- Odabaşoğlu, M. & Büyükgüngör, O. (2006a). Acta Cryst. E62, o236-o238.
- Odabaşoğlu, M. & Büyükgüngör, O. (2006b). Acta Cryst. E62, 0739-0741.
- Odabaşoğlu, M. & Büyükgüngör, O. (2006c). Acta Cryst. E62, o1524-o1525.

- Odabaşoğlu, M. & Büyükgüngör, O. (2006*d*). Acta Cryst. E**62**, 04543–04544.
- Odabaşoğlu, M. & Büyükgüngör, O. (2007a). Acta Cryst. E63, o186-o187.
- Odabaşoğlu, M. & Büyükgüngör, O. (2007b). Z. Naturforsch. Teil B. In the press.
- Odabaşoğlu, M. & Büyükgüngör, O. (2007c). Acta Cryst. E63, 04374-04375.
- Pimentel, G. C. & McClellan, A. L. (1960). *The Hydrogen Bond*. San Francisco: Freeman.
- Scheiner, S. (1997a). Molecular Interactions. From van der Waals to Strongly Bound Complexes. Chichester: Wiley.
- Scheiner, S. (1997b). Hydrogen Bonding, a Theoretical Perspective. New York: Oxford University Press.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, 0374–0376.
- Yeşilel, O. Z., Odabaşoğlu, M., Ölmez, H. & Büyükgüngör, O. (2006). Z. Naturforsch. Teil B, 61, 1243–1248.

Acta Cryst. (2007). E63, o4376-o4377 [doi:10.1107/S1600536807050490]

### Bis(4-ethylanilinium) 4,5-dichlorophthalate

### O. Büyükgüngör and M. Odabasoglu

#### Comment

We have been interested in hydrogen-bonding systems formed by organic amines and carboxylic acids (Odabaşoğlu & Büyükgüngör, 2007*a*-c; 2006*a*-d; Temel *et al.*, 2007; Odabaşoğlu *et al.*, 2003; Büyükgüngör & Odabaşoğlu, 2006*a*,b; Büyükgüngör & Odabaşoğlu, 2003; Büyükgüngör & Odabaşoğlu, 2002; Ersanlı *et al.*, 2004; Bozkurt *et al.*, 2006; Yeşilel *et al.*, 2006). The present work is part of a structural study of compounds of organic ammonium systems with hydrogen and halogen-bond donors and we report here the molecular and supramolecular structure of (I) (Figure 1).

In the phthalate anion, O1—C1—O2—C2 and O3—C8—O4—C7 planes and the plane of C2–C7 ring are not the same plane. The dihedral angles between the C2–C7 ring and O1—C1—O2—C2, O3—C8—O4—C7 planes are 13.72 (3)° and 84,64 (3)°, respectively. The dihedral angles between the aromatic C2–C7 (A), C11–C16 (B) and C19–C24 (C) rings planes are 75.90 (2)° (A/B), 68.15 (2)° (A/C), and 9.01 (2)° (B/C).

The ions are linked to each other by C6—H6···O1 hydrogen bonds forming C(6) chain along the *z*-axis (Fig. 2). Other hydrogen bons form  $[R_1^2(6)R_1^2(4)R_4^3(10)R_1^2(4)R_3^2(9)]$  (Etter, 1990) motifs (Fig. 3). The C—H··· $\pi$  interaction and hydrogen bonds properties are given in Table1.

#### Experimental

The title compound was prepared according to the method described by Odabaşoğlu & Büyükgüngör (2007*c*), using 3-ethylaniline and 4,5-dichlorophthalic acid as starting materials (yield 95%; m.p. 458–459 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol-water (1:1) solution at room temperature.

#### Refinement

All H atoms except bounded to N were refined using the riding model approximation with d(C-H) = 0.93 for aromatic, d(C-H) = 0.97 for methylene, d(C-H) = 0.96 for methyl and d(C-O) = 0.82 for hydroxyl H. ( $U_{iso}(H) = (1.2-1.5)U_{eq}$ (parent atom)]. N-bound H atoms were located in Fourier difference map and refined freely.

#### **Figures**



Figure 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level..

Figure 2. Part of the crystal structure of (I), showing the C(6) chain along the *c* axis. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, 3/2 - y, 1 - z].

Figure 3. Part of the crystal structure of (I), showing the hydrogen bonding  $R_1^2(6)R_1^2(4)R_4^3(10) R_1^2(4)R_3^2(9)$  motif. H atoms not involved in hydrogen bonds have been omitted for clarity.



### Bis(4-ethylanilinium) 4,5-dichlorophthalate

Crystal data

| $2C_{7}H_{7}F_{3}N^{+}C_{8}H_{3}Cl_{2}O_{4}^{2-}$ | $F_{000} = 1004$                                     |
|---------------------------------------------------|------------------------------------------------------|
| $M_r = 478.38$                                    | $D_{\rm x} = 1.364 { m Mg m}^{-3}$                   |
| Monoclinic, $P2_1/c$                              | Mo <i>K</i> $\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc                              | Cell parameters from 16318 reflections               |
| a = 16.9642 (16)  Å                               | $\theta = 2.1 - 27.9^{\circ}$                        |
| b = 11.8744 (8) Å                                 | $\mu = 0.31 \text{ mm}^{-1}$                         |
| c = 11.8783 (11)  Å                               | T = 296  K                                           |
| $\beta = 103.133 \ (8)^{\circ}$                   | Prism, colourless                                    |
| $V = 2330.2 (3) \text{ Å}^3$                      | $0.78\times0.45\times0.23~mm$                        |
| Z = 4                                             |                                                      |

### Data collection

| 4585 independent reflections           |
|----------------------------------------|
| 2666 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.069$                  |
| $\theta_{\text{max}} = 26.0^{\circ}$   |
| $\theta_{\min} = 2.1^{\circ}$          |
| $h = -20 \rightarrow 20$               |
| $k = -14 \rightarrow 14$               |
| $l = -14 \rightarrow 14$               |
|                                        |

Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                      |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                  |
| $R[F^2 > 2\sigma(F^2)] = 0.052$                                | H atoms treated by a mixture of independent and constrained refinement    |
| $wR(F^2) = 0.145$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0797P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 0.92                                                | $(\Delta/\sigma)_{\rm max} < 0.001$                                       |
| 4585 reflections                                               | $\Delta \rho_{\text{max}} = 0.62 \text{ e } \text{\AA}^{-3}$              |
| 314 parameters                                                 | $\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$                    |
| 3 restraints                                                   | Extinction correction: none                                               |
| Primary atom site location: structure-invariant direct methods |                                                                           |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | у          | Ζ          | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|------------|------------|---------------------------|
| C1   | 0.89830 (17) | 0.9151 (2) | 0.7758 (2) | 0.0419 (6)                |
| C2   | 0.83587 (16) | 0.8676 (2) | 0.6751 (2) | 0.0393 (6)                |
| C3   | 0.75484 (17) | 0.8843 (2) | 0.6729 (2) | 0.0446 (7)                |
| H3   | 0.7405       | 0.9267     | 0.7310     | 0.054*                    |
| C4   | 0.69517 (16) | 0.8395 (3) | 0.5866 (2) | 0.0468 (7)                |
| C5   | 0.71630 (17) | 0.7758 (3) | 0.5007 (2) | 0.0468 (7)                |
| C6   | 0.79687 (17) | 0.7593 (2) | 0.5006 (2) | 0.0452 (7)                |
| H6   | 0.8107       | 0.7178     | 0.4415     | 0.054*                    |
| C7   | 0.85740 (16) | 0.8040 (2) | 0.5880 (2) | 0.0386 (6)                |
| C8   | 0.94313 (17) | 0.7689 (3) | 0.5895 (2) | 0.0450 (7)                |
| C10  | 0.3417 (3)   | 0.8015 (5) | 0.3264 (6) | 0.1243 (19)               |
| H10A | 0.3462       | 0.7593     | 0.2581     | 0.149*                    |
| H10B | 0.3283       | 0.8787     | 0.3027     | 0.149*                    |
| C11  | 0.2713 (3)   | 0.7511 (3) | 0.3748 (4) | 0.0775 (11)               |
| C12  | 0.1952 (3)   | 0.7812 (4) | 0.3238 (4) | 0.0795 (11)               |
| H12  | 0.1865       | 0.8332     | 0.2637     | 0.095*                    |

| C13  | 0.1310 (2)   | 0.7375 (3)   | 0.3581 (3)   | 0.0655 (9)  |
|------|--------------|--------------|--------------|-------------|
| H13  | 0.0788       | 0.7594       | 0.3215       | 0.079*      |
| C14  | 0.14248 (18) | 0.6603 (3)   | 0.4476 (2)   | 0.0470 (7)  |
| C15  | 0.21790 (19) | 0.6257 (3)   | 0.5022 (3)   | 0.0611 (9)  |
| H15  | 0.2254       | 0.5734       | 0.5619       | 0.073*      |
| C16  | 0.2846 (2)   | 0.6721 (4)   | 0.4650 (4)   | 0.0795 (11) |
| H16  | 0.3371       | 0.6502       | 0.5002       | 0.095*      |
| C17  | 0.4675 (3)   | 0.4776 (5)   | 0.3165 (5)   | 0.1188 (18) |
| H17A | 0.5224       | 0.4905       | 0.3111       | 0.178*      |
| H17B | 0.4594       | 0.3986       | 0.3264       | 0.178*      |
| H17C | 0.4570       | 0.5181       | 0.3814       | 0.178*      |
| C18  | 0.4113 (2)   | 0.5174 (4)   | 0.2085 (4)   | 0.0857 (12) |
| H18A | 0.4242       | 0.4774       | 0.1437       | 0.103*      |
| H18B | 0.4219       | 0.5967       | 0.1986       | 0.103*      |
| C19  | 0.3213 (2)   | 0.5033 (3)   | 0.2024 (3)   | 0.0582 (8)  |
| C20  | 0.2659 (3)   | 0.5503 (3)   | 0.1126 (3)   | 0.0707 (10) |
| H20  | 0.2844       | 0.5928       | 0.0581       | 0.085*      |
| C21  | 0.1838 (2)   | 0.5367 (3)   | 0.1003 (3)   | 0.0666 (9)  |
| H21  | 0.1476       | 0.5698       | 0.0386       | 0.080*      |
| C22  | 0.15610 (18) | 0.4730 (3)   | 0.1807 (3)   | 0.0490 (7)  |
| C23  | 0.2101 (2)   | 0.4279 (3)   | 0.2713 (3)   | 0.0625 (9)  |
| H23  | 0.1918       | 0.3866       | 0.3269       | 0.075*      |
| C24  | 0.2915 (2)   | 0.4426 (3)   | 0.2815 (3)   | 0.0661 (9)  |
| H24  | 0.3276       | 0.4105       | 0.3440       | 0.079*      |
| C26  | 0.4134 (4)   | 0.8002 (7)   | 0.4016 (6)   | 0.155 (3)   |
| H26A | 0.4537       | 0.8321       | 0.3661       | 0.233*      |
| H26B | 0.4278       | 0.7240       | 0.4243       | 0.233*      |
| H26C | 0.4101       | 0.8437       | 0.4685       | 0.233*      |
| N1   | 0.07153 (15) | 0.6147 (3)   | 0.4812 (2)   | 0.0472 (6)  |
| N2   | 0.07019 (19) | 0.4498 (3)   | 0.1670 (3)   | 0.0636 (8)  |
| 01   | 0.87227 (13) | 0.9484 (2)   | 0.86003 (19) | 0.0649 (6)  |
| H1   | 0.9093       | 0.9490       | 0.9180       | 0.097*      |
| O2   | 0.97009 (11) | 0.91689 (17) | 0.76807 (17) | 0.0506 (5)  |
| O3   | 0.96912 (12) | 0.68350 (18) | 0.64711 (18) | 0.0552 (5)  |
| O4   | 0.98173 (12) | 0.8219 (2)   | 0.52755 (18) | 0.0606 (6)  |
| Cl1  | 0.59467 (5)  | 0.86080 (9)  | 0.58955 (8)  | 0.0726 (3)  |
| Cl2  | 0.64334 (5)  | 0.71200 (9)  | 0.39448 (7)  | 0.0705 (3)  |
| H1A  | 0.048 (3)    | 0.671 (4)    | 0.521 (4)    | 0.094 (14)* |
| H1B  | 0.032 (2)    | 0.592 (3)    | 0.410 (3)    | 0.059 (9)*  |
| H1C  | 0.085 (2)    | 0.562 (3)    | 0.531 (3)    | 0.055 (10)* |
| H2A  | 0.061 (3)    | 0.405 (4)    | 0.233 (4)    | 0.099 (15)* |
| H2B  | 0.053 (2)    | 0.412 (3)    | 0.099 (3)    | 0.064 (10)* |
| H2C  | 0.042 (3)    | 0.508 (4)    | 0.154 (4)    | 0.094 (16)* |
|      |              |              |              |             |
|      |              |              |              |             |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$    | $U^{23}$    |
|----|-------------|-----------------|-----------------|--------------|-------------|-------------|
| C1 | 0.0444 (16) | 0.0418 (15)     | 0.0400 (15)     | -0.0017 (13) | 0.0109 (13) | 0.0024 (12) |

| C2  | 0.0373 (14) | 0.0427 (15) | 0.0385 (14) | 0.0007 (12)  | 0.0098 (11) | 0.0037 (12)  |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C3  | 0.0404 (14) | 0.0529 (17) | 0.0413 (15) | 0.0054 (13)  | 0.0107 (12) | -0.0009 (13) |
| C4  | 0.0346 (14) | 0.0601 (18) | 0.0463 (16) | 0.0020 (13)  | 0.0102 (12) | 0.0059 (14)  |
| C5  | 0.0408 (15) | 0.0549 (18) | 0.0423 (15) | -0.0059 (13) | 0.0042 (12) | 0.0019 (14)  |
| C6  | 0.0464 (16) | 0.0531 (17) | 0.0375 (14) | -0.0001 (13) | 0.0123 (13) | -0.0009 (13) |
| C7  | 0.0379 (13) | 0.0425 (15) | 0.0366 (13) | 0.0008 (12)  | 0.0114 (11) | 0.0029 (12)  |
| C8  | 0.0418 (15) | 0.0593 (19) | 0.0337 (14) | 0.0011 (14)  | 0.0085 (12) | -0.0067 (14) |
| C10 | 0.090 (4)   | 0.117 (4)   | 0.173 (6)   | -0.019 (3)   | 0.043 (4)   | -0.026 (4)   |
| C11 | 0.097 (3)   | 0.066 (2)   | 0.084 (3)   | -0.027 (2)   | 0.052 (2)   | -0.018 (2)   |
| C12 | 0.091 (3)   | 0.080 (3)   | 0.073 (2)   | -0.017 (2)   | 0.029 (2)   | 0.003 (2)    |
| C13 | 0.069 (2)   | 0.069 (2)   | 0.059 (2)   | -0.0064 (18) | 0.0153 (17) | 0.0029 (17)  |
| C14 | 0.0458 (16) | 0.0553 (18) | 0.0421 (15) | -0.0014 (13) | 0.0148 (13) | -0.0089 (14) |
| C15 | 0.0466 (18) | 0.070 (2)   | 0.069 (2)   | 0.0003 (16)  | 0.0174 (16) | -0.0007 (18) |
| C16 | 0.0445 (18) | 0.088 (3)   | 0.109 (3)   | -0.0009 (18) | 0.022 (2)   | -0.025 (2)   |
| C17 | 0.064 (3)   | 0.145 (5)   | 0.139 (5)   | -0.011 (3)   | 0.005 (3)   | -0.013 (4)   |
| C18 | 0.070 (3)   | 0.091 (3)   | 0.099 (3)   | -0.014 (2)   | 0.026 (2)   | -0.016 (2)   |
| C19 | 0.059 (2)   | 0.0532 (19) | 0.064 (2)   | -0.0058 (16) | 0.0174 (17) | -0.0085 (17) |
| C20 | 0.087 (3)   | 0.064 (2)   | 0.066 (2)   | -0.007 (2)   | 0.028 (2)   | 0.0127 (18)  |
| C21 | 0.074 (2)   | 0.064 (2)   | 0.059 (2)   | 0.0117 (18)  | 0.0100 (18) | 0.0138 (17)  |
| C22 | 0.0506 (17) | 0.0477 (17) | 0.0496 (17) | 0.0036 (14)  | 0.0131 (14) | -0.0100 (14) |
| C23 | 0.065 (2)   | 0.068 (2)   | 0.0549 (19) | -0.0063 (17) | 0.0145 (17) | 0.0163 (17)  |
| C24 | 0.058 (2)   | 0.071 (2)   | 0.065 (2)   | -0.0010 (18) | 0.0043 (17) | 0.0144 (18)  |
| C26 | 0.106 (5)   | 0.217 (8)   | 0.144 (5)   | -0.024 (5)   | 0.030 (4)   | -0.011 (5)   |
| N1  | 0.0397 (13) | 0.0626 (18) | 0.0404 (14) | 0.0060 (13)  | 0.0112 (12) | 0.0018 (14)  |
| N2  | 0.0565 (18) | 0.069 (2)   | 0.065 (2)   | 0.0073 (16)  | 0.0134 (16) | -0.0157 (18) |
| 01  | 0.0560 (13) | 0.0947 (18) | 0.0461 (12) | -0.0116 (13) | 0.0156 (11) | -0.0244 (12) |
| 02  | 0.0368 (11) | 0.0623 (13) | 0.0521 (12) | -0.0064 (9)  | 0.0091 (9)  | -0.0079 (10) |
| 03  | 0.0502 (12) | 0.0549 (13) | 0.0599 (13) | 0.0133 (10)  | 0.0112 (10) | 0.0027 (11)  |
| O4  | 0.0424 (11) | 0.0909 (17) | 0.0525 (12) | 0.0032 (11)  | 0.0194 (10) | 0.0124 (12)  |
| Cl1 | 0.0358 (4)  | 0.1121 (8)  | 0.0693 (6)  | 0.0081 (4)   | 0.0108 (4)  | 0.0000 (5)   |
| Cl2 | 0.0515 (5)  | 0.0935 (7)  | 0.0599 (5)  | -0.0144 (4)  | -0.0014 (4) | -0.0156 (5)  |

## Geometric parameters (Å, °)

| C1—O2  | 1.242 (3) | С16—Н16  | 0.9300    |
|--------|-----------|----------|-----------|
| C1—O1  | 1.246 (3) | C17—C18  | 1.491 (7) |
| C1—C2  | 1.514 (4) | С17—Н17А | 0.9600    |
| C2—C3  | 1.383 (4) | С17—Н17В | 0.9600    |
| C2—C7  | 1.395 (4) | С17—Н17С | 0.9600    |
| C3—C4  | 1.374 (4) | C18—C19  | 1.521 (5) |
| С3—Н3  | 0.9300    | C18—H18A | 0.9700    |
| C4—C5  | 1.381 (4) | C18—H18B | 0.9700    |
| C4—Cl1 | 1.732 (3) | C19—C20  | 1.370 (5) |
| C5—C6  | 1.381 (4) | C19—C24  | 1.370 (5) |
| C5—Cl2 | 1.729 (3) | C20—C21  | 1.376 (5) |
| C6—C7  | 1.389 (4) | C20—H20  | 0.9300    |
| С6—Н6  | 0.9300    | C21—C22  | 1.382 (5) |
| С7—С8  | 1.509 (4) | C21—H21  | 0.9300    |
| C8—O3  | 1.246 (3) | C22—C23  | 1.356 (4) |
|        |           |          |           |

| C8—O4         | 1.260 (4) | C22—N2        | 1.456 (4) |
|---------------|-----------|---------------|-----------|
| C10—C26       | 1.335 (8) | C23—C24       | 1.370 (5) |
| C10—C11       | 1.557 (7) | С23—Н23       | 0.9300    |
| C10—H10A      | 0.9700    | C24—H24       | 0.9300    |
| C10—H10B      | 0.9700    | C26—H26A      | 0.9600    |
| C11—C12       | 1.345 (6) | C26—H26B      | 0.9600    |
| C11—C16       | 1.403 (6) | С26—Н26С      | 0.9600    |
| C12—C13       | 1.350 (5) | N1—H1A        | 0.96 (5)  |
| C12—H12       | 0.9300    | N1—H1B        | 0.99 (3)  |
| C13—C14       | 1.383 (5) | N1—H1C        | 0.86 (4)  |
| С13—Н13       | 0.9300    | N2—H2A        | 0.98 (5)  |
| C14—C15       | 1.360 (4) | N2—H2B        | 0.91 (4)  |
| C14—N1        | 1.456 (4) | N2—H2C        | 0.84 (5)  |
| C15—C16       | 1.417 (5) | O1—H1         | 0.8200    |
| C15—H15       | 0.9300    |               |           |
| O2—C1—O1      | 125.9 (3) | C18—C17—H17B  | 109.5     |
| O2—C1—C2      | 118.0 (2) | H17A—C17—H17B | 109.5     |
| O1—C1—C2      | 116.1 (3) | С18—С17—Н17С  | 109.5     |
| C3—C2—C7      | 119.3 (2) | H17A—C17—H17C | 109.5     |
| C3—C2—C1      | 118.4 (2) | H17B—C17—H17C | 109.5     |
| C7—C2—C1      | 122.2 (2) | C17—C18—C19   | 116.4 (4) |
| C4—C3—C2      | 121.3 (3) | C17—C18—H18A  | 108.2     |
| С4—С3—Н3      | 119.4     | C19-C18-H18A  | 108.2     |
| С2—С3—Н3      | 119.4     | C17—C18—H18B  | 108.2     |
| C3—C4—C5      | 119.5 (3) | C19—C18—H18B  | 108.2     |
| C3—C4—Cl1     | 119.3 (2) | H18A—C18—H18B | 107.3     |
| C5—C4—Cl1     | 121.1 (2) | C20-C19-C24   | 117.0 (3) |
| C4—C5—C6      | 120.1 (2) | C20-C19-C18   | 119.8 (3) |
| C4—C5—Cl2     | 121.1 (2) | C24—C19—C18   | 123.3 (3) |
| C6—C5—Cl2     | 118.8 (2) | C19—C20—C21   | 122.3 (3) |
| C5—C6—C7      | 120.6 (3) | C19—C20—H20   | 118.9     |
| С5—С6—Н6      | 119.7     | С21—С20—Н20   | 118.9     |
| С7—С6—Н6      | 119.7     | C20—C21—C22   | 119.1 (3) |
| C6—C7—C2      | 119.2 (3) | C20-C21-H21   | 120.5     |
| C6—C7—C8      | 116.7 (2) | C22—C21—H21   | 120.5     |
| C2—C7—C8      | 123.7 (2) | C23—C22—C21   | 119.4 (3) |
| O3—C8—O4      | 124.2 (3) | C23—C22—N2    | 119.5 (3) |
| O3—C8—C7      | 116.8 (3) | C21—C22—N2    | 121.1 (3) |
| O4—C8—C7      | 118.8 (3) | C22—C23—C24   | 120.4 (3) |
| C26—C10—C11   | 114.0 (6) | С22—С23—Н23   | 119.8     |
| С26—С10—Н10А  | 108.8     | С24—С23—Н23   | 119.8     |
| C11—C10—H10A  | 108.8     | C23—C24—C19   | 121.9 (3) |
| C26—C10—H10B  | 108.8     | C23—C24—H24   | 119.0     |
| C11—C10—H10B  | 108.8     | C19—C24—H24   | 119.0     |
| H10A—C10—H10B | 107.7     | C10—C26—H26A  | 109.5     |
| C12—C11—C16   | 119.5 (4) | C10—C26—H26B  | 109.5     |
| C12—C11—C10   | 118.0 (5) | H26A—C26—H26B | 109.5     |
| C16—C11—C10   | 122.4 (5) | С10—С26—Н26С  | 109.5     |
| C11—C12—C13   | 121.4 (4) | H26A—C26—H26C | 109.5     |

| C11—C12—H12   | 119.3      | H26B—C26—H26C   | 109.5      |
|---------------|------------|-----------------|------------|
| C13—C12—H12   | 119.3      | C14—N1—H1A      | 110 (2)    |
| C12—C13—C14   | 120.2 (4)  | C14—N1—H1B      | 107.7 (19) |
| C12—C13—H13   | 119.9      | H1A—N1—H1B      | 109 (3)    |
| C14—C13—H13   | 119.9      | C14—N1—H1C      | 111 (2)    |
| C15—C14—C13   | 121.3 (3)  | H1A—N1—H1C      | 104 (3)    |
| C15-C14-N1    | 120.2 (3)  | H1B—N1—H1C      | 115 (3)    |
| C13—C14—N1    | 118.4 (3)  | C22—N2—H2A      | 110 (3)    |
| C14—C15—C16   | 117.7 (3)  | C22—N2—H2B      | 107 (2)    |
| C14—C15—H15   | 121.1      | H2A—N2—H2B      | 112 (3)    |
| С16—С15—Н15   | 121.1      | C22—N2—H2C      | 112 (3)    |
| C11—C16—C15   | 119.8 (4)  | H2A—N2—H2C      | 114 (4)    |
| C11—C16—H16   | 120.1      | H2B—N2—H2C      | 100 (4)    |
| С15—С16—Н16   | 120.1      | C1—O1—H1        | 109.5      |
| C18—C17—H17A  | 109.5      |                 |            |
| O2—C1—C2—C3   | -168.0 (3) | C26-C10-C11-C12 | 158.2 (6)  |
| O1—C1—C2—C3   | 12.5 (4)   | C26-C10-C11-C16 | -25.0 (8)  |
| O2—C1—C2—C7   | 14.8 (4)   | C16-C11-C12-C13 | 0.4 (6)    |
| O1—C1—C2—C7   | -164.7 (3) | C10-C11-C12-C13 | 177.4 (4)  |
| C7—C2—C3—C4   | 0.0 (4)    | C11-C12-C13-C14 | 0.2 (6)    |
| C1—C2—C3—C4   | -177.3 (3) | C12-C13-C14-C15 | -0.7 (5)   |
| C2—C3—C4—C5   | 0.5 (4)    | C12-C13-C14-N1  | -179.5 (3) |
| C2—C3—C4—Cl1  | 178.8 (2)  | C13-C14-C15-C16 | 0.5 (5)    |
| C3—C4—C5—C6   | -1.2 (4)   | N1-C14-C15-C16  | 179.3 (3)  |
| Cl1—C4—C5—C6  | -179.5 (2) | C12-C11-C16-C15 | -0.6 (6)   |
| C3—C4—C5—Cl2  | 176.8 (2)  | C10-C11-C16-C15 | -177.4 (4) |
| Cl1—C4—C5—Cl2 | -1.6 (4)   | C14-C15-C16-C11 | 0.1 (5)    |
| C4—C5—C6—C7   | 1.6 (4)    | C17—C18—C19—C20 | 171.9 (4)  |
| Cl2—C5—C6—C7  | -176.5 (2) | C17—C18—C19—C24 | -9.8 (6)   |
| C5—C6—C7—C2   | -1.1 (4)   | C24—C19—C20—C21 | -0.9 (6)   |
| C5—C6—C7—C8   | 172.1 (3)  | C18-C19-C20-C21 | 177.5 (4)  |
| C3—C2—C7—C6   | 0.4 (4)    | C19—C20—C21—C22 | -0.3 (6)   |
| C1—C2—C7—C6   | 177.5 (2)  | C20—C21—C22—C23 | 1.6 (5)    |
| C3—C2—C7—C8   | -172.4 (3) | C20-C21-C22-N2  | -175.7 (3) |
| C1—C2—C7—C8   | 4.7 (4)    | C21—C22—C23—C24 | -1.7 (5)   |
| C6—C7—C8—O3   | -90.4 (3)  | N2—C22—C23—C24  | 175.7 (3)  |
| C2—C7—C8—O3   | 82.5 (3)   | C22—C23—C24—C19 | 0.5 (6)    |
| C6—C7—C8—O4   | 85.0 (3)   | C20—C19—C24—C23 | 0.8 (5)    |
| C2—C7—C8—O4   | -102.1 (3) | C18—C19—C24—C23 | -177.5 (4) |

Hydrogen-bond geometry (Å, °)

| D—H···A                    | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$ |
|----------------------------|-------------|--------------|--------------|-------------------------------------|
| N1—H1B···O1 <sup>i</sup>   | 0.99 (4)    | 2.67 (3)     | 3.442 (3)    | 134 (2)                             |
| N1—H1C···O1 <sup>ii</sup>  | 0.86 (4)    | 1.90 (4)     | 2.747 (4)    | 172 (3)                             |
| N1—H1B···O2 <sup>i</sup>   | 0.99 (4)    | 1.77 (4)     | 2.746 (3)    | 166 (3)                             |
| N1—H1A···O3 <sup>iii</sup> | 0.93 (4)    | 2.24 (4)     | 3.021 (3)    | 140 (3)                             |
| N1—H1A···O4 <sup>iii</sup> | 0.93 (4)    | 2.15 (4)     | 3.013 (4)    | 154 (3)                             |

| N2—H2C···O2 <sup>i</sup>                                                                                                                                                                                                                                                                                           | 0.84 (5) | 2.20 (5) | 2.784 (4) | 126 (4) |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|---------|--|--|--|
| N2—H2A····O3 <sup>iv</sup>                                                                                                                                                                                                                                                                                         | 0.98 (5) | 1.94 (5) | 2.913 (5) | 174 (4) |  |  |  |
| N2—H2C···O4 <sup>i</sup>                                                                                                                                                                                                                                                                                           | 0.84 (5) | 2.58 (5) | 3.350 (5) | 152 (4) |  |  |  |
| N2—H2B····O4 <sup>v</sup>                                                                                                                                                                                                                                                                                          | 0.92 (4) | 1.83 (4) | 2.739 (4) | 172 (3) |  |  |  |
| C6—H6···O1 <sup>vi</sup>                                                                                                                                                                                                                                                                                           | 0.93     | 2.52     | 3.388 (3) | 154     |  |  |  |
| C13—H13···O3 <sup>i</sup>                                                                                                                                                                                                                                                                                          | 0.93     | 2.54     | 3.402 (4) | 154     |  |  |  |
| C15—H15…O1 <sup>ii</sup>                                                                                                                                                                                                                                                                                           | 0.93     | 2.55     | 3.254 (4) | 133     |  |  |  |
| C23—H23···O3 <sup>iv</sup>                                                                                                                                                                                                                                                                                         | 0.93     | 2.93     | 3.641 (4) | 134     |  |  |  |
| C23—H23···Cg1                                                                                                                                                                                                                                                                                                      | 0.93     | 2.69     | 3.389 (4) | 133     |  |  |  |
| Symmetry codes: (i) <i>x</i> -1, - <i>y</i> +3/2, <i>z</i> -1/2; (ii) - <i>x</i> +1, <i>y</i> -1/2, - <i>z</i> +3/2; (iii) <i>x</i> -1, <i>y</i> , <i>z</i> ; (iv) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1; (v) - <i>x</i> +1, <i>y</i> -1/2, - <i>z</i> +1/2; (vi) <i>x</i> , - <i>y</i> +3/2, <i>z</i> -1/2. |          |          |           |         |  |  |  |











Fig. 3



